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The problem of thermal conductivity for an infinitely long composite cylinder is solved.
The solution obtained permits analysis of a probe of finite dimensions and the contact re-
sistance between probe and casing. The experimental methodology is described and re-
sults are presented for determination of thermal conductivity of aqueous solutions of nitric
and sulfuric acid at low temperatures.

A variant of the cylindrical probe method has been proposed for investigations of the thermal con-
ductivity of chemically active substances. In using a cylindrical probe with an external protective shield,
it is important, on the one hand, to consider the effect of the shield thickness, and on the other hand, the
contact resistance which exists between the interior surface of the shield and the measurement heater ele-
ment, both of which factors influence the final form of the equation used in calculating results. This prob-
lem has not been solved to date.

We will examine the problem of development of a temperaturefield, created bya composite infinite cyl-
inder in an unbounded medium, the interior portion of the cylinder being a volume heat source. It is as-
sumed that the Fourier number of this internal portion is sufficiently small. This permits one to neglect
the temperature distribution over the cross section of the interior portion of the cylinder. The external
portion of the composite cylinder is a thin-walled casing. A thermal contact resistance exists between the
internal and external portions of the cylinder. The exterior surface of the cylinder has perfect contact with
the surrounding medium.

The problem may be formulated as follows:
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wherein the designations Q@ = wry/2; o = rypycy.

Employing the Laplace transform relative to time 7 and solving the system so obtained for T (p), we
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The function Tl (p) branches at p = 0. Thus, in returning to the original with the Laplace inversion
formula, an integration contour must be selected with a profile along the negative real semiaxes. On this
contour and within it, TB (p) is a single-valued function of p and has no poles, This is easily established
by using the asymptotic expression for cylindrical functions I, (x) =~ (1/V/2m)exp (x), Ky x) ~ vV 1/2xexp (~x)
and studying the behaviar of the function in question far large p values,

Qg the basis of residne theory and Jordan's lemma, the contour integral can be found by integration
along the line of the profile and low curvature.

Employing the method proposed by Golstein in [3], we expand the function Tl (p) into a series in low
powers of p
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and v is Euler’s constant,

Integrating Eq. (10) by terms, and using the values of the Eq. (10) integrals along the chosen contour
of Eq. (1), we obtain, for large Fo
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where Fo = a7/ r?.

It follows from Eq. (11) that the curve of Ty 28 a function of In Fo has a rectilinear asymptote with an
angular coefiicient equal to ¥y§/ Zig
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On the basis of Eq. (12), it is simple to determine the thermal conductivity of the external medium.
Knowing the values T (ry) and T;(r,) at differing times, we find
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The thermal conductivity of the external medium is determined by Eq. (12)
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On the basis of the method described above, a device was constructed for determination of thermal
conductivity of substances in the liquid and solid states.

Sulfuric and nitric acids were studied, their thermal conductivities being determined over the tem-
perature interval —180 to +20°C. A variant of the probe method was employed.

The formula for calculation of the thermal conductivity of the substances studied has the form

=Ky A 1
e N e

The probe constant Ky is found experimentally with a reference liquid.
A diagram of the apparatus is presented in Fig. 1.

The measurement chamber 3 is constructed of stainless steel in the form of a cylinder. Internal
chamber dimensions are: diameter, 40 mm; height, 140 mm. The weight, wall thickness, and other char-
acteristics of the chamber have negligible significance when determining thermal conductivity by the probe
method.

The resistance thermometer 5 and heater 4 are wound on the surface of the measurement chamber,
and are designed to stabilize the temperature of the chamber and substance being studied.

The measurement probe is mounted coaxially within the chamber. Probe dimensions are: working
length (heater length), 55 mm; diameter, 1.2 mm. The probe has a combined heater and resistance ther-
mometer,

The excess probe temperature during the heating process in the substances studied did not exceed
0.5°C. This permitted relating the thermal conductivity values obtained to the initial temperature and
neglecting changes in power input values produced by changes in the resistance of the probe heater —ther-
mometer.

The change in power dissipation inthe heater —thermometer produced by change in its resistance
from start to end of heating is

AP = I*AR = I’R BAL. %))
The ratio of the power increment AP to the power Py is
AP PPRPAL  PAt (18)

P,  PR,(+P)  14Pt
For a copper conductor att = 0°C AP/ P; =0.2%, and at t = -196°C AP/ Pt =1%.

The excess temperature value is found by

At = AU . (19)
IRB
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Fig. 1. Diagram of apparatus. 1) Dewar flask; 2) liquid nitrogen;
3) measurement chamber containing substance to be studied; 4)
measurement chamber heater; 5) measurement chamber thermo-
meter; 6) probe; 7) leads; 8) low-temperature vessel.

Fig. 2. Electrical diagram of probe temperature measuring and
recording system. 1) Probe envelope; 2) heater —thermometer
winding; 3) interlayer; 4) measurement chamber bottom.

Measurement and recording of temperature are performed with a bridge circuit M (Fig. 2), in one
of the legs of which the probe heater ~thermometer is connected. The value of the resistance Ry_t is de-
termined from the ratios of the bridge leg resistances at balance

R, R
Ry, = 5 (20)
In balancing the circuit, switch S is placed in position I, the bridge current then being determined by
R,. In position II the measurement diagonal is connected to the electronic automatic potentiometer EAP,
and the bridge is fed directly from the dc voltage regulator DCVR. I the unbalance voltage during probe
heating exceeds 10 mV, unbalance voltage compensation steps are manually switched in with the low re-
sistance potentiometer LRP, ensuring that the EAP carriage returns to its initial position. This affords
convenience in registration and interpretation of the thermograms.

In studying thermal conductivity with the probe method, it is necessary that there be an equality
and constancy of temperature at every point within the volume of the medium studied. The necessary tem-
perature values are produced by the thermostat system.

Experiments were conducted as follows. Initially, the probe constant K; was determined. The probe
constant was calculated from a thermogram taken with glycerine, then verified with mineral oil and dis-
tilled water thermograms, Mineral oil, glycerine, and water were chosen since they have low, average,
and maximum thermal conductivities among nonmetallic liquids.

The thermograms obtained on the EAP were graphically constructed in new coordinates (AU, ln7).
The asymptote to the function AU = {(Iln7) thus obtained was constructed.

Using the known thermal conductivity of the substance, the constant Ky can be found from the formula

Ky = Mg a,. (21)
where
= PO
In i)
Ty

The formula for determination of the thermal conductivity of the substance to be studied has the form
1

— (22)

2 =K,
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Fig. 3. Thermal conductivity of aqueous solutions of nitric (@)
and sulfuric (b) acid versus temperature. a: 1) composition
HNO; 25%, Hy0 75%; 2) HNO, 50%, H,O 50%; 3) HNO; 72%, N,O,
3%, 0 25%; 4) HNO; 95%, NyO, 3%, H,0 2% (molar concen-
trations), b: 1) composition HyO 100%; 2) HySO, 25%, HyO 75%;
3) HyS0, 50%, HyO 50%; 4) HySO, 75%, HyO 25%; 5) H,S0, 94%,
H,0 6%.(weight concentrations); A, W/m - deg; t, °C.

Knowing the angle of inclination of the asymptote to the function AU =f(In1), constructed graphically
from the thermogram of probe heating in the substance to be studied (in the same coordinate scale, in which
K; was found), and knowing the value of K;, we determine the thermal conductivity of the substance.

Since the thermogram is constructed in the coordinates (AU, In7) the above statements are valid
only for fixed temperature. This is due to the fact that the coefficient of proportionality between AU and
probe temperature changes and is dependent on probe current.

For any arbitrary temperature, Eq. (22) can be rewritten, allowing for Eq. (19), in the form

Iz 1
=LK . (23)
A I, ' tga

The probe current IT is determined from temperature T by the condition that
LRy, = const.
The error in determination of A is no greater than 7%,
Reproducibility of results at every fixed temperature was within the limits of 1%.

The results obtained for thermal conductivity for the solutions mentioned above are presented in
Fig. 3.

The aqueous acid solutions were produced from chemically pure sulfuric and nitric acid, obtained
by double distillation of the commercial products.

Sulfuric acid concentration was determined by density, with a relative error no greater than 1%.

Analysis of the nitric acid was conducted by the volume method with titration with a base. The
error in determining concentration was 1%. Calculation of the nitrogen tetroxide content was done by the
manganometric method, with error no greater than 19,

The thermal conductivity values of the 25 and 75% nitric acid solutions at T = —35°C are significantly
higher than those at the neighboring points of the temperature interval. The same is true of the 25% sulfuric
acid solution at T = —60°C. This is evidently due to the fact that these temperatures are within the region of
a phase shift, where Eq. (22) for determining thermal conductivity requires refinement.
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NOTATION

Ty (7) is the temperature of the interior portion of the composite cylinder;
Tylr, 7) is the temperature of the compound cylinder envelope;
Ty(r, 7) is the temperature of the external medium;
A, ¢y, Py are the thermal conductivity, specific heat flux, and density of interior part of cylinder;
Mgy @y are the thermal conductivity and thermal diffusivity of compound cylinder envelope;
Az, O3 are the thermal conductivity and thermal diffusivity of external medium;
w is the power of volume heat source;
ry is the radius of interior portion of composite cylinder;
Ty is the external radius of composite cylinder envelope;
H=1/R where R is thermal resistance between interior portion and envelope of cylinder;
IO x), Ii x) ’
Kix), Ky are the modified Bessel functions of the first and second types of zeroth and first order,
respectively;
&4 is the excess probe temperature;
8 is the temperature resistance coefficient;
I is the probe current at temperature at which K, is determined;
It is the probe current at temperature T,
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